Ngày nay, trong hầu hết các sách, học sinh đều được học rằng Trái đất có hình cầu, giống như trái bóng. Nhưng ai là người đầu tiên tính toán được chu vi của Trái đất? Đó chính là nhà toán học người Hy Lạp Eratosthenes (khoảng 276 - 193 trước Công nguyên).
Khoa học hiện đại tính toán rằng Trái đất đã được hình thành khoảng 4,55 tỷ năm và loài người xuất hiện khoảng 200.000 năm trước. Từ xa xưa cho tới ngày nay, con người luôn tìm cách lý giải nguồn gốc hình thành của chính mình và sự hình thành, phát triển của tự nhiên. Những câu hỏi cần được giải đáp như: Trái đất có hình dạng như thế nào? Trái đất quay quanh Mặt trời hay Mặt trời quanh Trái đất... đã tốn không biết bao nhiêu công sức, trí tuệ của nhiều thế hệ. Ban đầu là quan niệm Trái đất hình phẳng, rồi đến hình cầu. Ban đầu là quan niệm Mặt trời quay quanh Trái đất, rồi đến quan điểm đúng đắn như ngày nay là Trái đất quay quanh Mặt trời. Lịch sử ghi nhận nhà toán học Pytagore (580 - 500 TCN) là người đầu tiên đưa ra quan điểm Trái đất hình cầu. Ông xuất phát từ quan điểm Trái đất phải có dạng vật chất hoàn hảo nhất để từ đó dự đoán là hình cầu. Nhà toán học Aristotle (thế kỷ thứ IV TCN) khi quan sát hiện tượng nguyệt thực là người đầu tiên đưa ra được chứng cứ khoa học về dạng hình cầu của Trái đất theo quan điểm của Pytagore. Tuy vậy, phải đến thế kỷ XVII, từ sau chuyến đi biển vòng quanh thế giới (1619 - 1621) của Magenllan, quan điểm này mới được công nhận rộng rãi. Thế nhưng, ngay từ thế kỷ thứ III TCN, Eratosthenes đã dứt khoát khẳng định Trái đất hình cầu và ông đã đo được chu vi của Trái đất khoảng 40.349km, sai lệch không nhiều so với tính toán của khoa học hiện đại là 40.074km. Xuất phát từ quan điểm hình cầu của Trái đất, ông đã dùng thước để đo khoảng cách giữa hai thành phố Alexandrie và Syène. Ông đã đo ánh nắng vào lúc 12h trưa theo giờ Syène trong ngày hạ chí, một trong hai ngày trong năm khi Mặt trời ở xa xích đạo nhất về phía bắc hoặc phía nam. Lúc này ở Syène thì Mặt trời chiếu thẳng đứng, còn ở Alexandrie thì bóng nghiêng 7 độ. Bằng những tính toán hình học, ông đã đưa ra được kết quả trên. Thật đáng kinh ngạc!
Thành tựu của nhà toán học Eratosthenes không chỉ dừng lại ở đó. Ông là người đầu tiên đưa ra phương pháp để liệt kê các số nguyên tố, ngày nay gọi là sàng Eratosthenes. Số nguyên tố là số đếm lớn hơn 1 mà chỉ chia hết cho hai số là 1 và chính nó. Trước đó, để kiểm tra một số đếm xem có phải là số nguyên tố hay không, người ta phải lấy số này chia cho tất cả các số từ 1 đến chính nó. Nếu số đó chia hết cho nhiều hơn hai số thì không phải là số nguyên tố (ta gọi là hợp số). Chẳng hạn muốn kiểm tra số 15, ta lấy 15 chia cho từng số 1, 2, 3,... , 15. Ta thấy 15 chia hết cho 1, 3, 5, 15. Tức là 15 chia hết cho nhiều hơn hai số nên 15 không phải là số nguyên tố. Sàng Eratosthenes thì làm theo cách khác đơn giản hơn. Ông lấy lá cọ ghi tất cả các số đếm nhỏ hơn 100 rồi chọc thủng các hợp số. Như thế, bảng còn lại là các số nguyên tố. Muốn kiểm tra xem một số tiếp theo có phải là số nguyên tố hay không, chỉ cần chia số đó cho từng số nguyên tố còn lại trong bảng. Nếu có một phép tính mà chia hết thì số đó là hợp số, ngược lại là số nguyên tố. Chẳng hạn, ban đầu ta có bảng số nguyên tố tăng dần theo phương pháp trên là 2, 3, 5, 7. Kiểm tra các số tiếp theo là 8, 9, 10 thì thấy tương ứng chia hết cho 2, 3, 2 nên các số này đều là hợp số. Tiếp theo, số 11 đều không chia hết cho 2, 3, 5, 7 nên là số nguyên tố. Lúc này ta có dãy số nguyên tố mới là 2, 3, 5, 7, 11.
Câu hỏi kỳ này: Em hãy dùng phương pháp trên của Eratosthenes, lập luận để đưa ra 5 số nguyên tố tiếp sau số 11.
Câu trả lời gửi về chuyên mục Toán học - học mà chơi, Tòa soạn Báo Hànội mới, 44 Lê Thái Tổ, Hoàn Kiếm, Hà Nội.
(*) Không sao chép dưới mọi hình thức khi chưa có sự đồng ý bằng văn bản của Báo Hànộimới.