Toán về số đầu vào, số đầu ra
Xã hội - Ngày đăng : 07:46, 17/11/2013
Bài toán về số đầu vào và số đầu ra thường là cho số thứ nhất với số thứ ba, ta phải tìm số thứ hai hoặc tìm phép toán. Bài toán chuyển động hay tính chu vi, diện tích là những bài toán thuộc dạng này. Những dạng toán về số đầu vào, đầu ra nếu được thực hành trực tiếp trên máy tính sẽ tạo cho chúng ta sự hứng thú. Đây cũng là cách học toán hiệu quả đã được áp dụng ở nhiều nước: Học tương tác trên mạng và trên ti vi. Sau đây là một số bài tập ví dụ.
Bài 1. Trong phép cộng với 2, hãy tìm số đầu vào biết số đầu ra là:
a) 5; b) 8; c) 10; d) 14.
Giải. a) 3; b) 6; c) 8; d) 12.
Nhận xét. Ở đây ta sử dụng phép toán ngược của phép cộng là phép trừ, lấy số đầu ra trừ 2 để được số đầu vào. Chẳng hạn để giải ý a) ta lấy 5 - 2 = 3.
Bài 2. Trong phép nhân với 3, hãy tìm số đầu vào biết số đầu ra là:
a) 12; b) 18; c) 27; d) 30.
Giải. a) 4; b) 6; c) 9; d) 10.
Nhận xét. Phép toán ngược của phép nhân là phép chia. Lấy số đầu ra chia cho 3 ta được số đầu vào.
Bài 3. Biết diện tích một hình chữ nhật bằng 60. Hãy tìm số đo chiều dài biết số đo chiều rộng là:
a) 2; b) 3; c) 4; d) 5.
Giải. a) 30; b) 20; c) 15; d) 12.
Bài 4. Một người đi xe máy với vận tốc trung bình là 40 km/h. Hãy tìm thời gian (đơn vị giờ) để người đó đi được quãng đường (đơn vị kilômét) là:
a) 40; b) 60; c) 80; d) 100.
Giải. a) 1; b) 1,5; c) 2; d) 2,5.
Bài 5. Hãy tìm phép toán, biết các cặp số đầu vào và đầu ra sau có cùng chung một trong bốn phép toán là cộng, trừ, nhân hoặc chia:
a) 2, 8; b) 1, 4; c) 5, 20; d) 7, 28.
Giải. Từ ý a), ta thấy 8 > 2 nên
chỉ thử các phép toán cộng với 6 hoặc nhân với 4. Thử vào b) thì phép cộng không thỏa mãn. Phép nhân với 4 thỏa mãn cả ý b) và các ý còn lại.
Bài 6. Câu hỏi tương tự như bài 5:
a) 3, 1; b) 4, 2; c) 8, 6; d) 9, 7.
Giải. Từ ý a), ta thấy 3 > 1 nên chỉ thử các phép toán trừ đi 2 hoặc chia cho 3. Thử vào b) thì phép chia không thỏa mãn. Phép trừ đi 2 thỏa mãn cả ý b) và các ý còn lại.
Bài 7. Cho những số sau là thương của phép chia một số cho 5 với số dư bằng 2, hãy tìm số ban đầu:
a) 3; b) 5; c) 6; d) 8.
Giải. a) 17; b) 27; c) 32; d) 42.
Nhận xét. Ta lấy thương nhân với 5 rồi lấy kết quả cộng thêm 2 để được đáp số.
Kết quả kỳ trước. Có 7 bạn tập cả bơi và võ nhưng không tập khiêu vũ.
Kỳ này. Ở bài 7, cho thương bằng 8, hãy tìm số ban đầu. Câu trả lời gửi về chuyên mục "Toán học, học mà chơi", Tòa soạn Báo Hànộimới, 44 Lê Thái Tổ, Hoàn Kiếm, Hà Nội.